Feature expansion for query-focused supervised sentence ranking

نویسندگان

  • Seeger Fisher
  • Brian Roark
چکیده

We present a supervised sentence ranking approach for use in extractive summarization. Using a general machine learning technique provides great flexibility for incorporating varied new features, which we demonstrate. The system proves quite effective at query-focused multi-document summarization, both for single summaries and for series of update summaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query-focused Supervised Sentence Ranking for Update Summaries

We present a supervised sentence ranking approach for use in extractive update summarization. We use the same general machine learning approach described in earlier DUC papers, and adapt it to the update summarization task. The system proves adaptable enough to be effective at queryfocused update summaries.

متن کامل

Query-focused summarization by supervised sentence ranking and skewed word distributions

We present a supervised sentence ranking approach for use in extractive summarization. The supervised approach achieves domain independence by making use of a range of word distribution statistics as features, of the sort typically used for unsupervised domain-independent ranking. We present empirical trials on the DUC 2006 query-directed multi-document summarization task, and demonstrate that ...

متن کامل

PKU-ICST at TRECVID 2012: Instance Search Task

We participate in all two types of instance search task in TRECVID 2012: automatic search and interactive search. This paper presents our approaches and results. In this task, we mainly focus on exploring the effective feature representation, feature matching, re-ranking algorithm and query expansion. In feature representation, we adopt two basic visual features and five keypoint-based BoW feat...

متن کامل

Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning

Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...

متن کامل

Query-Focused Multi-Document Summarization Using Co-Training Based Semi-Supervised Learning

This paper presents a novel approach to query-focused multi-document summarization. As a good biased summary is expected to keep a balance among query relevance, content salience and information diversity, the approach first makes use of both the content feature and the relationship feature to select a number of sentences via the cotraining based semi-supervised learning, which can identify the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007